
Journal of Network and Computer Applications 221 (2024) 103772

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

End-to-end active queue management with Named-Data Networking
Miguel Rodríguez-Pérez ∗, Sergio Herrería-Alonso, J. Carlos López-Ardao,
Raúl F. Rodríguez-Rubio
atlanTTic research center, Universidade de Vigo, Maxwell s/n, 36310, Vigo, Spain

A R T I C L E I N F O

Keywords:
Information-centric networking
Named-data networking
Active queue management
Congestion control
CoDel

A B S T R A C T

The innovative information-based Named-Data Networking (NDN) architecture provides a good opportunity
to rethink many of the design decisions that are taken for granted in the Internet today. For example, active
queue management (AQM) tasks have been traditionally implemented in the routers to alleviate network
congestion before their buffers fill up. However, AQM operations could be performed on an end-to-end basis
by taking advantage of NDN features. In this paper, we provide an implementation of an AQM algorithm for
the NDN architecture that we use to drive a classical AIMD-based congestion control protocol at the receivers.
To accomplish this, we take advantage of the 64-bit Congestion Mark field present in the link layer of NDN
packets to encode both rate and delay information about each transmission queue along a network path. In
order to make the solution scalable, this information is delivered stochastically, guaranteeing that receivers get
accurate and updated information about every pertinent queue. This information is enough to implement the
well-known controlled delay (CoDel) AQM algorithm. Simulation results show that our client-located CoDel
implementation is able to react to congestion when the bottleneck queuing delay surpasses the 5ms target set
by the usual in-network CoDel implementation and, at the same time, get a fair and efficient share of the
available transmission capacity.
1. Introduction

The current global network infrastructure, commonly known as the
Internet, and fundamentally based on the TCP/IP architecture, has
almost replaced all previous dedicated wide area networks. It has been
claimed that its success comes from its simplicity and versatility, as
it places almost no restrictions on both the underlying networking
technology, nor in the switched data itself. In the end, applications
using TCP/IP are provided with a point-to-point channel that can be
used to transmit arbitrary information.

While this approach has served quite satisfactorily for the past
forty years, it is not well suited for many of the new communica-
tion paradigms currently being used on the Internet. Nowadays, vast
amounts of traffic belong not to point-to-point communications but to
the transport of information. In these scenarios, the user is not really
interested in establishing a communication with a particular server to
then get some information from it. In fact, as long as the user can attest
the information authenticity and integrity, the user does not care about
its actual location on the network. The current use of load-balancers
and overlaid caching networks is a band-aid solution intended to solve
this mismatch between the network communication model and the

∗ Corresponding author.
E-mail addresses: miguel@det.uvigo.gal (M. Rodríguez-Pérez), sha@det.uvigo.es (S. Herrería-Alonso), jardao@det.uvigo.es (J. Carlos López-Ardao),

rrubio@det.uvigo.es (R.F. Rodríguez-Rubio).

needs of modern applications. This mismatch has its own serious short-
comings, such as the continuous recentralization of the network and,
consequently, its diminishing reliability. Information-Centric Networks
(ICN) (Kutscher et al., 2012), and, in particular, Named-Data Networks
(NDN) (Zhang et al., 2014), provide a service where users can directly
address information pieces, regardless of their location. This is more
suited to the most common network uses, while it can still be em-
ployed to provide a conventional point-to-point communication model
on top (Trossen et al., 2015). Additionally, some partially unsolved
problems of the TCP/IP architecture—like multipath transmission, mul-
ticast, and mobility—are naturally supported by NDN. In the NDN
architecture, applications request information from the network by
sending an Interest packet that identifies the procured content. The
network drives this packet towards a node that holds a (cached) copy
of the named content or to an appropriate producer. Whatever the case,
the content is sent back to the requesting application (consumer) as the
payload of a Data packet.

Certainly, ICN networks, and NDN in particular, present both new
opportunities and challenges for application traffic management.
Among the challenges, a multi-producer setup, with information chunks
vailable online 24 October 2023
084-8045/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.jnca.2023.103772
Received 2 May 2022; Received in revised form 19 June 2023; Accepted 17 Octob
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

er 2023

https://www.elsevier.com/locate/jnca
http://www.elsevier.com/locate/jnca
mailto:miguel@det.uvigo.gal
mailto:sha@det.uvigo.es
mailto:jardao@det.uvigo.es
mailto:rrubio@det.uvigo.es
https://doi.org/10.1016/j.jnca.2023.103772
https://doi.org/10.1016/j.jnca.2023.103772
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2023.103772&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Network and Computer Applications 221 (2024) 103772M. Rodríguez-Pérez et al.
disseminated across the network, hinders traditional congestion control
algorithms that rely on relatively smooth round trip time (RTT) mea-
surements and stable bottleneck locations. On the other hand, a new
architecture is a good opportunity to try new approaches, like hop-by-
hop congestion control or increased assistance by in-network devices.
Additionally, as data is only entered into the network as a response to
consumers’ demands, it is the downstream equipment the one in charge
of regulating the transmission rate. This is beneficial, as this equipment
can receive and/or generate congestion information as it occurs in
the network and react accordingly faster than a producer. These new
capabilities can be used to address ongoing network problems with a
different set of tools. For instance, in the last few years, the excessive
amount of buffering done by most network devices, usually known as
bufferbloat, has received ample attention from the research community
as it is a source of excessive latency and subpar performance. A key
ingredient of a comprehensive solution to this problem relies on imple-
menting proper active queue management (AQM) inside the network,
thus helping to (indirectly) drive the congestion control algorithms of
the hosts. However, proper tuning of AQM is still an active research
topic (Ye et al., 2021b), limiting its widespread usage.

1.1. Contributions

In this paper we present a novel approach for simultaneously per-
forming both congestion control and AQM operations at the end hosts
of an NDN network. This would enable faster deployment and experi-
mentation with the tuning and development of new AQM algorithms.

For the approach to work, we designed a new mechanism that
increases the congestion information that end hosts receive from the
network. This mechanism takes advantage of the existing possibility for
NDN routers to use up to 64 bits of information per packet to encode
congestion information between connected devices. As eight bytes is
a very tight space to encode accurate information about every queue
in the network path, we designed a scalable stochastic algorithm that
ensures that consumers get information from all the relevant queues.
The information conveyed is the instantaneous throughput and the
queuing delay, which should be enough for proper AQM and congestion
control operations.

We show how the aforementioned information can be used to
implement existing AQM algorithms at the end hosts. In particular,
and in order to test the validity and accuracy of our scalable algo-
rithm, we chose to provide a sample implementation of the controlled
delay (CoDel) AQM algorithm. Then, we use the congestion informa-
tion generated at the host by CoDel to drive a typical window-based
TCP Reno-like congestion control algorithm. This algorithm modulates
the Interest sending rate and, thus, indirectly, the data rate. Using
Codel (Nichols et al., 2018) as a proof-of-concept also serves additional
purposes. Firstly, it is a practical and modern AQM algorithm known
to work quite well nowadays. So, it is important for us to prove that
our approach allows for its client-side implementation. Additionally, it
has a non-trivial state machine, making the client-side implementation
both more interesting and challenging. We feel that a correct client-
side implementation of CoDel is further proof of the validity of our
approach.

Simulation results show that our CoDel implementation is able to
limit the amount of traffic in the network queues while obtaining a fair
and efficient share of the bottleneck link capacities at the same time.

The rest of the paper is organized as follows. Section 2 describes the
related work. Then, in Section 3 we describe how to deliver bottleneck
information to the end hosts in an efficient and scalable manner.
Section 4 proposes a method to implement CoDel exclusively in the
end hosts, using only the information gathered about the bottlenecks.
The results shown in Section 5 validate our proof-of-concept CoDel im-
plementation. We provide a discussion about the merits of the proposal
in Section 6. Finally, the conclusions are laid out in Section 7.
2

2. Related work

Proposals for ICN congestion control algorithms can be divided
into two main categories: end-to-end solutions and in-network pro-
tocols. The first try to adapt well-known Internet techniques to the
multi-producer scenario, while the latter use the increased processing
capabilities of ICN routers to both adapt forwarding rates and, when
possible, spread the load among several producers and routers.

2.1. End to end approaches

Multipath-aware ICN Rate-based Congestion Control (MIRCC) (Mah-
dian et al., 2016) is a rate-based end-to-end multipath aware ICN
congestion control mechanism that uses information provided by the
routers themselves to select the best producer for each chunk while
regulating, at the same time, the transmission rate via Interest pacing.
The Path-specified Transport Protocol (PTP) works in a similar vein (Ye
et al., 2018). Like MIRCC, PTP is able to control the traffic rate on
each path independently, but it should be more easily scalable as it
avoids performing direct rate estimations at the routers. A different
alternative is explored in Wu et al. (2021). This technique tags the
different paths used to obtain the chunks so that the consumer can
use a different request rate for each producer. Then, a window-based
end-to-end congestion control algorithm is applied along each subpath.
In Qin et al. (2020) the consumer gets one bit of congestion information
from the last eight routers along the downstream path. It then uses
this information to both select the best path and perform an additive
increase-multiplicative decrease (AIMD) congestion control algorithm
to control the traffic rate. The authors of Hu et al. (2021) adapt the BBR
(Bottleneck Bandwidth and Round-trip propagation time) congestion
control algorithm (Cardwell et al., 2016) to NDN networks. Because
data packets can come from different network nodes, they needed to
adapt the RTT estimation procedure at the heart of BBR. Their results
showed higher data rates than those obtained with classic congestion
control algorithms and good performance in wireless environments.

In Ye et al. (2021a) the authors propose a network utility maxi-
mization model to formulate multi-source and multipath transmission
in NDN with in-network caches, and implement a congestion control
protocol that is able to monitor the RTT of each sub-flow indepen-
dently. Their congestion estimation module measures the number of
backlogged packets for each sub-flow—following the design principle
of MultiPath TCP (MPTCP) wVegas (Cao et al., 2012) and TCP BBR.
Then, it uses path switching as the underlying forwarding plane so
that consumers can decide the forwarding path of each Interest packet.
The path-specified congestion control enables content consumers to
separate the traffic control on each path, which consequently facilitates
fair and efficient bandwidth sharing among all consumers.

Remote Adaptive AQM (RAAQM) (Carofiglio et al., 2013) estimates
at the consumer the AQM state of a random early drop (RED) managed
queue at the bottleneck to generate synthetic congestion marks and
drive a reactive congestion control algorithm. However, as it has to
rely on indirect queue measures (mainly RTT variations) the range of
possible AQM algorithms is limited. In contrast, our proposal is able to
obtain direct queue length measures from all the involved routers to
mimic and create a broader range of AQM algorithms.

2.2. In-network congestion control

Network-mediated congestion control protocols have also been pro-
posed for ICN networks. They try to act as close as possible to the
congestion by either rerouting around it and/or adapting the Interest
forwarding rate. One of these in-network proposals is the Hop-By-Hop
Interest Shaping mechanism (HoBHIS) (Rozhnova and Fdida, 2012).
HoBHIS is a rate-based hop-by-hop congestion control mechanism that
calculates the available capacity of each ICN router in a distributed
manner to adjust its session Interest rate and, therefore, dynamically



Journal of Network and Computer Applications 221 (2024) 103772M. Rodríguez-Pérez et al.

c
t
h
i
t

regulate its data rate and transmission buffer occupancy. In Thibaud
et al. (2020) the nodes exchange the requisites of different applica-
tions and the network constraints to drive the traffic along the most
appropriate paths and then regulate the traffic rate via the proper
pacing of Interest packets. The problem with these proposals, that only
modify the forwarding rate inside the network, is that they are not
able to completely eliminate congestion, because its ultimate cause is
that the request rate of the consumers is just too high. Li et al. (2023)
goes one step further and couples consumer rate-adjustment and in-
network traffic diversion to overcome congestion and improve resource
utilization.

A Deep Reinforcement Learning (DRL) technique is applied in the
edge routers in Yang et al. (2022). The edge routers obtain accurate
local information about congestion—maximum queue length of Data
packets—inspecting the passing Data packets as they move downstream
traveling through intermediate nodes. An intelligent rate adjustment
mechanism in such edge routers classifies the collected path informa-
tion according to their congestion degrees to provide suitable inputs for
the DRL technique, and then outputs a reasonable transmission rate for
Interest packets.

A different approach is presented in Nikmard et al. (2022). The
authors propose a Dynamic Cache Placement (DCP) method to provide
congestion avoidance by dynamically relocating the content of in-cache
routers according to the traffic volume pattern and the link capacity.
The DCP method distributes the popular data to the network regions
with less traffic load and more accessible routers to balance the traffic
load of congested routers. If buffer occupancy exceeds some predefined
threshold, the provider nodes will notify appropriate neighbors in order
to shift the traffic load, and even move the cached contents.

A way to ensure fairness among the different NDN flows is shown
in Zafar et al. (2020). It works by shaping the rate of Interest packets
in intermediate nodes. This avoids that applications that fail to obey
congestion status obtain an excessive amount of resources.

The Yellow AQM in ICN routers (Zeng et al., 2021) adapts existing
AQM algorithms to the non peer-to-peer nature of ICN flows. While
in the TCP/IP architecture most communications are between just two
hosts, in NDN Interest packets can be answered by any node containing
a copy of the requested content. The paper provides a mechanism for
routers to discern between cached and forwarded traffic adapting the
AQM mechanisms.

The cooperation between caching and congestion control is further
studied in Qu et al. (2023). The authors modify NDN so that a single
Interest packet can provide several Data packets, and uses information
added to the Data packets to improve caching efficiency. To overcome
congestion, they estimate both delay and link capacity at every router
and transmit this information attached to the Interest packets. Produc-
ers and caching nodes use this information to limit the sending rate of
the data itself.

2.3. Hybrid alternatives

There are also alternatives that try to deal with congestion using
both in-network and end-to-end techniques. For instance, in Ye et al.
(2020) the authors propose a mechanism that implements an AQM
algorithm in the routers without access to the underlying link charac-
teristics, as this link can be a rate-varying channel, such as a WebSocket
or a TCP tunnel. This mechanism uses RTT measurements between
neighboring NDN nodes to drive the AQM algorithm and adds explicit
congestion marks in Data packets to notify downstream consumers.

A different alternative is presented in Hashemi and Bohlooli (2021).
A new congestion control module is added to the routers. This module
calculates the forwarding probabilities to each possible outgoing inter-
face, and communicates with the consumers to help them to manage
the congestion window size. This requires both modifying the behavior
of NDN routers and the format of NDN packets. Their added explicit-
3

feedback mechanisms, both to the consumers and between NDN nodes, r
result in a multi-source and multi-path congestion control algorithm
that is able to provide a fair share of resources to the consumers.

WinCM (Wang et al., 2018) uses a CoDel AQM algorithm to derive
a congestion signal that is then sent to the consumers. However, this
signal is modified so that it carries information about the actual excess
of queuing delay. Consumers can use this extra information to adjust
their congestion windows in a more precise way. This provides better
stability when compared with approaches that use the conventional
binary congestion signal. This information is also used by downstream
NDN routers to adjust their forwarding decisions and avoid congested
routes.

Finally, a well-known hybrid approach is also provided by PCON
(Schneider et al., 2016). PCON capable routers add a Congestion Mark
to Data packets that can be filled by any router to indicate congestion
along the path. This congestion mark can then be employed both
by downstream routers, to inform the path-selection algorithm when
forwarding Interest packets and by the consumers themselves to pace
their Interest producing rate. Song and Zhang (2022) works similarly,
but in this case routers use queue size as the congestion feedback so
downstream routers can adapt forwarding decisions and modulate their
Interest sending rate.

Our proposal is focused on exploring the feasibility of moving queue
management from the network core to the end hosts. For this, we only
take advantage of only two NDN features: (a) nodes controlling the
actual data rate are on the receiving end of traffic, and (b) there is
more available space to carry state information in NDN packets than
in IP packets. As such, we will design a mechanism for single-producer
scenarios.

3. Delivering queue state to the edges

The peers in an end-to-end transmission need to obtain accurate and
prompt information about the state of the network queues if they are to
carry out the AQM operations themselves. In the NDN architecture, the
consumer is ultimately responsible for the transmission rate, as it can
modulate the amount of data in transit by controlling the number of
outstanding Interest packets. So, our mechanism has to make sure that
every consumer gets enough information to simultaneously perform
AQM and congestion control operations in a timely manner. This
information must be transmitted in the Data packets, as they are the
only ones received by the consumers.

The current version of the NDN link protocol, NDN link protocol
version 2 (NDNLPv2 (Junxiao et al., 2017)), defines a Congestion Mark
tag that can carry up to eight bytes of information.1 The only reserved
value is 0, used to communicate no congestion. The rest of the values
can be used, without restriction, to represent different levels of conges-
tion, leaving the exact meaning to the congestion control strategy of
the consumers.

We propose to include both the queuing delay and the transmission
rate in the Congestion Mark tag, as they provide a rather complete
assessment of the congestion experienced by packets in the outgoing
link. Note that we prefer to include the link delay instead of the
packet queue size since it usually provides a better characterization
of congestion and, additionally, does not depend on the actual link
capacity. In any case, the queue size can be obtained indirectly by
simply multiplying the link rate by the delay.

Certainly, it is not efficient to transmit information about every
queue along the path in every Data packet. There needs to be a way to
coordinate the different routers so that they can take turns to transmit
their congestion-related information.

1 Clearly, 8 bytes are much more than what TCP/IP currently uses to signal
ongestion information (2 bits in the IP header, and two additional flags in
he TCP header). However, we must consider that with the added information
osts can do both congestion control and AQM. Additionally, an 8-bytes field
s not bigger than the size of other conventional options, like, for instance,
he timestamp field in TCP, which occupies 10 bytes. In any case, it does not

epresent even 1% of the typical Ethernet MTU.



Journal of Network and Computer Applications 221 (2024) 103772M. Rodríguez-Pérez et al.

t

p
t
I
t
r
i
a
d
o
i
l

3

i
I
e
w
s
m
w
a

T
t

T
r
r
r

L
f

P
t
p
n

P

Fig. 1. Diagram showing the information flow from a producer to the consumer through routers 𝑅1 to 𝑅𝑁 . The queue state information of just one of the involved links (𝑄𝑖) is
ransmitted within the Data packet.
We have represented in Fig. 1 a simplified version of the pro-
osed algorithm workflow. The consumer application regulates the
ransmission rate with the number of pending Interest packets. These
nterest packets are forwarded to an appropriate producer (just one in
he figure, for simplicity) that responds with Data packets. Then, the
outers along the return path may include their outgoing queue state
n the Data packet header. Note that while the first router is always
ble to include this information, the rest of the routers in the path will
etermine if they replace this information with the one of their own
utgoing queue. For this they use the coordination method described
n the next subsection. Finally, the consumer gets information from a
ink 𝑖 ∈ [1, 𝑁] and uses it to perform both AQM and congestion control.

.1. Router coordination

We employ a stochastic approach for choosing which router should
nclude the state information about its outgoing link in Data packets.
deally, all the routers along the transmission path should get an
qual chance to include a congestion mark. Since normal transmission
indows can easily account for hundreds of packets, the consumer

hould receive several updates from each router every RTT. Keep in
ind that, in order to perform AQM and not just congestion avoidance,
e need status information about all non-empty queues along a path,
nd not just from the bottleneck one.

We propose a simple method that has several important properties:

• Each Data packet carries exactly one congestion mark.
• A given consumer receives, on average, the same number of

congestion marks for every queue along the transmission path.
• Routers do not need to store extra state about ongoing transmis-

sions.
• The coordination information can be completely contained in the

Data packets themselves.

he algorithm is stated as follows. Every time a Data packet is about
o depart the transmission queue:

1. If there is no congestion mark, add a new congestion mark.
2. If there is a congestion mark, replace it with probability Pr (𝑖) =

1∕𝑖, where 𝑖 is the distance, in hops, from the producer to the
current queue.

o analyze why such a simple probability function produces the desired
esults just consider, without loss of generality, that the ordered set of
outers  = {𝑅1,… , 𝑅𝑁} forms a path between a producer and the
equesting consumer.

emma 1. If Pr (𝑖) = 1∕𝑖,∀𝑅𝑖 ∈ , the probability that the congestion mark
rom a particular router 𝑅𝑗 ∈  arrives to the consumer is Pa(𝑗) = 1∕𝑁 .

roof. The probability Pa(𝑗) that the congestion information about
he outgoing link of router 𝑅𝑗 gets to the consumer is directly the
robability that router 𝑅𝑗 replaces the previous congestion tag and that
o subsequent router replaces its congestion tag. So

a(𝑗) = Pr (𝑗) ×
𝑁
∏

(

1 − Pr (𝑖)
)

= 1
𝑗
×

𝑁
∏

(

1 − 1
𝑖

)

= 1
𝑁

. □ (1)
4

𝑖=𝑗+1 𝑖=𝑗+1 o
Please note that two consumers downstream of the same router, but
with different path distances 𝑁 and 𝑁 ′, will receive a congestion mark
from it with respective probabilities 1∕𝑁 and 1∕𝑁 ′. Also notice that
the only additional information needed by the coordination algorithm
is the current distance to the producer, which can be encoded using a
single byte of the Congestion Mark tag. We will refer to this byte as the
𝑐𝑜𝑢𝑛𝑡 value.

3.2. Encoding congestion information

Consumers need to store information about all the queues in the
transmission path. To do this, they need to be able to identify all of
them. To this end, the Congestion Mark embedded in the Data packet has
to include a permanent unique identifier (ID) of the queue entering the
congestion information. Successive congestion state information from
the different routers enables the different consumers to track congestion
dynamics. This ID, however, does not need to have any associated
meaning, and consumers should treat it as an opaque bitstream. A
straightforward implementation consisting of assigning a sequential
ID to each router would require no further coordination among the
routers—recall that the 𝑐𝑜𝑢𝑛𝑡 value is transmitted in the Congestion
Mark. However, it would fail as soon as a single router is shared
by two or more transmissions originating from different producers.
The alternative, also without explicit coordination, is to randomly
select each queue ID from a sufficiently large population of different
identifiers.

The length of the queue ID field limits the allowed population
size. The size of the queue ID field is a compromise between the ID
collision probability and the space left for encoding the 𝑐𝑜𝑢𝑛𝑡, 𝑟𝑎𝑡𝑒 and
queuing 𝑑𝑒𝑙𝑎𝑦 values. We need to account for the fact that paths with
more than ten routers are common nowadays on the Internet. In any
case, paths consisting of sixty routers, although very rare, also have to
be considered.2 The probability that at least two queues along a path
share the same random ID is an instance of the well-known birthday
paradox problem. The collision probability for a path with 𝐿 queues
and 2𝑛 possible identifiers is given by

Pc(𝐿, 𝑛) ≈ 1 − e−𝐿
2∕(2𝑛+1). (2)

Table 1 provides the values for some combinations of 𝑛 and 𝐿 values.
As we can see, having less than 24 bits produces unacceptable high
collision probabilities even for conservative path lengths. In fact, even
using 24 bits for the ID would result in more than 1 in every 100 000
transmissions being unable to fully distinguish information from in-
volved queues. We feel that 32 bits provide the right level of protection,
with negligible collision chance for usual path lengths (< 20 hops)
and very small probability for larger paths. In any case, note that this
is the worst case scenario in which every link along a path becomes
the bottleneck at least once during the communication and thus needs
to perform AQM operations. In practice, very few links ever become
a bottleneck, so it is enough to avoid collisions only between IDs
pertaining to bottleneck queues. For multipath transmissions, we do
not need to ensure that all the router IDs of the different subpaths

2 Many popular operating systems currently employ 64 as the initial value
f the Time To Live (TTL)/Hop-limit field of IP datagrams.



Journal of Network and Computer Applications 221 (2024) 103772M. Rodríguez-Pérez et al.

v
(
d
1
t
2
s
t
C
(
l
c
s
c
(
a
a
f
q

w
a

A
i
i
t
a

M
w

Table 1
Collision probability for different path length (𝐿) and ID bit length (𝑛) combinations.

ID bit length (𝑛)

𝐿 4 8 12 16 24 32

8 0.860 0.120 7.78 × 10−3 488 × 10−6 1.91 × 10−6 7.45 × 10−9

16 1.00 0.393 30.8 × 10−3 1.95 × 10−3 7.63 × 10−6 29.8 × 10−9

32 1.00 0.865 0.118 7.78 × 10−3 30.5 × 10−6 119 × 10−9

64 1.00 1.00 0.393 30.8 × 10−3 122 × 10−6 477 × 10−9

128 1.00 1.00 0.865 0.118 488 × 10−6 1.91 × 10−6

are different, just that the bottleneck IDs of the different subpaths are
different. 32 bits should ensure this easily as long as the number of
simultaneous subpaths is not too large.

Using 32 bits for the Queue ID, and 8 for encoding the 𝑐𝑜𝑢𝑛𝑡
alue, leaves just 24 bits to simultaneously encode the queuing delay
𝛿) and the transmission rate on the queue (𝑟). The range of possible
elay values goes from nanoseconds (it just takes 120 ns to transmit a
500 bytes frame on an 100Gb∕s Ethernet link) to seconds. The possible
ransmission rates also encompass a similar magnitude range. Clearly,
4 bits are not enough to simultaneously encode both values with
atisfactory precision. We propose that routers randomly select whether
o send rate or queuing delay information and use one bit of the
ongestion Mark to indicate the kind of information being transmitted
bit R). Using a random procedure should avoid any undesired corre-
ation between traffic patterns and the information received by each
onsumer. This ensures that every consumer gets, approximately, the
ame amount of information about both the bottleneck delay and its
urrent transmission rate. The other 23 bits are used to encode the rate
in bits per second) or the queuing delay (in picoseconds). As 23 bits
re just enough to represent almost 7 orders of magnitude, we employ
floating-point representation, using 15 bits for the significand and 8

or the exponent. In this way we can represent any conceivable rate or
ueuing delay value.

The final encoding of the Congestion Mark is represented in Fig. 2,
here the bit R is set to 1 when the transmitted information is a rate
nd 0 if it carries a delay value.

Algorithm 1 Router marking procedure.
1: 𝑞𝑢𝑒𝑢𝑒_𝑖𝑑 ← random(0, 232 − 1)
2: function MarkOutgoingPacket(pkt)
3: if pkt has congestion mark then
4: 𝑖 ← pkt.Count + 1
5: else
6: 𝑖 ← 1
7: if random(0, 1) < 1∕𝑖 then
8: pkt ← ReplaceCongestionMark(pkt)
9: pkt.Count ← 𝑖

10: return pkt
11: function ReplaceCongestionMark(pkt)
12: pkt.Queue ID ← 𝑞𝑢𝑒𝑢𝑒_𝑖𝑑
13: 𝑅 ← round(random(0, 1))
14: pkt.R ← 𝑅
15: if 𝑅 = 0 then
16: pkt.Value ← 𝑑𝑒𝑙𝑎𝑦
17: else
18: pkt.Value ← 𝑟𝑎𝑡𝑒
19: return pkt

A description of this procedure in algorithmic form is shown in
lgorithm 1. The random(𝑎, 𝑏) function provides a uniform number

n the interval (𝑎, 𝑏). At startup each router generates its own unique
dentifier (𝑞𝑢𝑒𝑢𝑒_𝑖𝑑). Afterwards, before transmitting each Data packet,
he MarkOutgoingPacket function is called, and it modifies the packet
ccording to the rules detailed previously in the text.
5

d

4. A client-located CoDel implementation

The CoDel (Nichols and Jacobson, 2012; Nichols et al., 2018) active
queue management algorithm tries to keep bottleneck links fully busy
while bounding the average queuing delay. To this end, it keeps some
statistics about the queue length (in time units) during the last measur-
ing interval as well as the status of the algorithm itself. When it detects
that the queue length is persistently greater than a predefined target
value, it enters the drop state and starts marking some packets with
congestion indications. The actual operation algorithm can be seen in
Fig. 3. Every time a new packet 𝑗 is transmitted, its sojourn time (𝑆𝑗)
is compared to the 𝑡𝑎𝑟𝑔𝑒𝑡 value. When this value is greater than the
target, it enters the drop state. If the queue has stayed in the drop state
for more than the 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 time (a parameter of the CoDel algorithm),
the outgoing packet is either dropped or marked with a congestion
indicator. Additionally, the interval time is reduced with a power low
to ensure a rapid congestion response if the congestion is persistent.

Whereas in current networks this procedure has to be carried out
by the routers, and as such, the initial values of both the 𝑡𝑎𝑟𝑔𝑒𝑡 and
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 parameters are decided by the network admin, in our proposal
it is up to the consumers to mimic this behavior. Recall that, using
the previously proposed coordination protocol, the routers provide the
consumers with the necessary information in the congestion tag: a
sample of the sojourn time of packets as they exit the network queues.

However, consumers must be aware that they are usually sharing
the queue with other consumers. In a classical AQM implementation,
the router will not notify every consumer about the congestion situa-
tion, but only the one whose packet has been selected (in the case of
CoDel, at most one packet after each 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙). If all the consumers were
to react simultaneously to the congestion indication, their synchronized
response would likely be a cause of severe network instability. To
avoid this problem, consumers in our proposal implement a modified
version of the marking procedure where the 𝑡𝑜𝑡𝑎𝑙 and 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 variables
are always updated (to keep the state of the AQM algorithm), but
the packet is only marked with some probability Pm. This probability
should be the same as the probability that a packet from this consumer
would have been dropped or marked by the AQM mechanism in the
router. Setting

Pm = consumer rate
link rate = 𝑅𝑇𝑇 × 𝑐𝑤𝑛𝑑

link rate , (3)

where 𝑅𝑇𝑇 is the consumer’s estimation of the round-trip delay and
𝑐𝑤𝑛𝑑 is its current congestion window, satisfies this requirement as
long as the sizes of packets crossing the bottleneck are similar. Note
that all this information is already available to consumers.

In addition to the usual information related to congestion control,
consumers have to store additional information about the state of each
queue to perform AQM operations. Let us define

𝑖 = {, 𝑟, 𝛿}, (4)

the state information of the queue identified by the queue id 𝑖, where
𝑟 is the last measure of its throughput, 𝛿 is the queuing delay, and  is
the state of the CoDel algorithm:

 = {𝑠𝑡𝑎𝑡𝑒, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙}, (5)

with 𝑠𝑡𝑎𝑡𝑒 ∈ {No Drop,Drop,Mark}.
Now, every time a new Data packet is received with a congestion

tag, the consumer extracts the queue identifier 𝑖 and updates 𝑖: the
rate or queuing delay is updated to the received value and the CoDel
state  is recalculated following Algorithm 2. The UpdateCodelState
function is called with the current values of the CoDel state , that is
updated with its output, and the most recent measure of the sojourn
delay (𝑖[𝛿]). Finally, if after returning from the function, 𝑖[] =

ark, a congestion signal is fed to the congestion control algorithm
ith probability Pm = 𝑅𝑇𝑇 × 𝑐𝑤𝑛𝑑∕𝑖[𝑟]. The complete procedure is
etailed in pseudocode form in Algorithm 3.



Journal of Network and Computer Applications 221 (2024) 103772M. Rodríguez-Pérez et al.

2

Fig. 2. Information encoding in the congestion tag. Bit R controls if the Congestion Mark carries a delay or a rate.
Fig. 3. Modified CoDel algorithm finite-state machine.

Fig. 4. Dumb-bell topology for the multi-consumer scenario. 𝐶1 to 𝐶4 are the
consumers, 𝑅1 and 𝑅2 are two intermediate routes and, finally, 𝑃1 to 𝑃4 is the set
of producers.

Algorithm 2 CoDel algorithm. In the code, 𝑛𝑜𝑤 is a variable that always
has the current time. This code is called for every Data packet arrival
with the latest available queuing delay value 𝛿.
1: function UpdateCodelState({𝑠𝑡𝑎𝑡𝑒, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙},𝛿)
2: if 𝑠𝑡𝑎𝑡𝑒 = No Drop then
3: 𝑡𝑜𝑡𝑎𝑙 ← 0
4: 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ← 100ms
5: if 𝛿 > TARGET then
6: 𝑠𝑡𝑎𝑡𝑒 ← Drop
7: 𝑠𝑡𝑎𝑡𝑢𝑠_𝑐ℎ𝑎𝑛𝑔𝑒 ← 𝑛𝑜𝑤
8: else if 𝑠𝑡𝑎𝑡𝑒 = Drop then
9: if 𝛿 > TARGET and 𝑛𝑜𝑤 ≥ 𝑠𝑡𝑎𝑡𝑢𝑠_𝑐ℎ𝑎𝑛𝑔𝑒 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 then

10: 𝑠𝑡𝑎𝑡𝑒 ← Mark
11: else if 𝛿 < TARGET then
12: 𝑠𝑡𝑎𝑡𝑒 ← No Drop
13: else if 𝑠𝑡𝑎𝑡𝑒 = Mark then
14: 𝑡𝑜𝑡𝑎𝑙 ← 𝑡𝑜𝑡𝑎𝑙 + 1
15: 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ← 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙∕

√

𝑡𝑜𝑡𝑎𝑙
16: if 𝛿 > TARGET then
17: 𝑠𝑡𝑎𝑡𝑒 ← Drop
18: 𝑠𝑡𝑎𝑡𝑢𝑠_𝑐ℎ𝑎𝑛𝑔𝑒 ← 𝑛𝑜𝑤
19: else
20: 𝑠𝑡𝑎𝑡𝑒 ← No Drop
1: return {𝑠𝑡𝑎𝑡𝑒, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙}
6

Algorithm 3 Complete procedure executed on arrival of Data packets.
1: function SignalsCongestion(pkt)
2: 𝑖 ← pkt.Queue ID
3: 𝑣𝑎𝑙 ← pkt.Significand × 2pkt.Exponent

4: if pkt.R = 0 then
5: 𝑄𝑖[𝛿] ← 𝑣𝑎𝑙
6: else
7: 𝑄𝑖[𝑟] ← 𝑣𝑎𝑙
8: {𝑠𝑡𝑎𝑡𝑒, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙} ← UpdateCodelState(𝑖[],𝑖[𝛿])
9: 𝑄𝑖[] ← {𝑠𝑡𝑎𝑡𝑒, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙}

10: if 𝑠𝑡𝑎𝑡𝑒 = Mark and random(0, 1) < 𝑅𝑇𝑇 × 𝑐𝑤𝑛𝑑∕𝑖[𝑟] then
11: return true
12: return false

5. Results

We have implemented a proof of concept version of the previous
algorithm as a modification to the GenericLinkService class of
the NDN Forwarding Daemon (NFD) (Anon, 2022). Then we run it
with the help of a new Consumer application under the NDN Simu-
lator (Anon, 2020). The source code for the simulated applications and
the associated code implementing both the consumer application and
the modifications to NFD are available to download at Rodríguez Pérez
(2023).

The Consumer application uses the information gathered from the
routers to generate the congestion signals it should receive if there were
a bottleneck in the network running the CoDel AQM algorithm with a
target delay of 5ms. Then, it uses these synthetic congestion signals to
drive a simplified Reno-like congestion control algorithm to manage
the amount of pending Interest packets.

We have set up three simulation experiments to assess the behavior
of the algorithm. We have employed producers with an infinite amount
of pending data to be transmitted to a set of consumers requesting
orthogonal sets of the data. As we are solely interested in the ability
to move the queue management to the network terminals, we have
ignored other information centric characteristics of the architecture,
such as native multicast delivery or in-network caching. The payload
size was set to 1024 bytes and the NDN packets were not encapsulated
by any legacy protocol, but transmitted directly over point-to-point
links.

5.1. Simple topology

In the first experiment, we used a simple dumb-bell topology to gain
confidence in the proper behavior of the algorithm and its implemen-
tation. The precise network topology is the one represented in Fig. 4.
All the links in this network have the same characteristics, that is, a
100Mb∕s capacity and a propagation delay of 2ms. In this experiment,
four consumers (𝐶1, 𝐶2, 𝐶3, 𝐶4) request data from the corresponding
four producers (𝑃1, 𝑃2, 𝑃3, 𝑃4) while sharing a bottleneck (the 𝑅2 → 𝑅1
link). To observe the dynamic behavior, the consumers are not started
simultaneously, but instead they wait 30 s after one another. In the same
way, they do not stop at the same time. Instead, 𝐶𝑖 stops at instant
𝑡𝑖 = 120 + 30𝑖 seconds, so only in the period from 90 s to 150 s all the

consumers are active.



Journal of Network and Computer Applications 221 (2024) 103772M. Rodríguez-Pérez et al.

c
s
t
w
a
c
e
A
t
c
b

i
r
p
d
a
v
t
t
t
t

t
r
r

c

Fig. 5. Instantaneous throughput obtained by each consumer and its sum under the dumb-bell topology.
Table 2
Average throughput obtained by each consumer (𝐶1 to 𝐶4) in every 30 s
interval (in Mb∕s).

Interval 𝐶1 𝐶2 𝐶3 𝐶4

0 s–30 s 91
30 s–60 s 46 47
60 s–90 s 31 34 31
90 s–150 s 22 22 27 24
150 s–180 s 31 34 29
180 s–210 s 45 49
210 s–240 s 91

Fig. 5 shows the instantaneous throughput of each consumer in
olored lines, while the total throughput across the bottleneck link is
hown in black color. It can be seen how the total traffic stays very close
o 100Mb∕s during the whole experiment, with just a brief interruption
hen the penultimate flow abandons the network while the last flow
ugments its rate. The individual rates show that, on average, each
onsumer gets close to its expected fair share of the available capacity,
ven if the results are rather noisy, as is to be expected from an
IMD congestion control algorithm. We have included the average

hroughput for each consumer in each interval in Table 2.3 The results
onfirm that our solution is able to reach a fair allocation of the
ottleneck capacity among the competing flows.

The delay experienced by each consumer during each transmission
s plotted in Fig. 6. The expected average round-trip delay has been
epresented as a black line at 17ms—twice the propagation delay (6ms)
lus the 5ms target for the CoDel algorithm. Even though the round-trip
elay of each individual packet varies with quite a large amplitude, its
veraged value (represented with a wider line) stays close to the target
alue most of the time. The exception is when the number of flows is
oo small. We see that, when less than three flows share the bottleneck,
he AIMD reaction to congestion indications keeps the average (but not
he instantaneous) round-trip delay below the target. In any case, recall
hat the link capacity is still fully employed.

To gain more confidence in the AQM results, we also check both
he instantaneous and the average length of the bottleneck queue,
epresented in Fig. 7. As before, we have employed a black line to
epresent the expected maximum queue length: in this case, almost 60

3 We disregarded the first 5 s in each interval to give some time to the
ongestion control algorithms to reach a steady state.
7

c

packets, equivalent to 5ms of queuing delay.4 As expected, the figure
mirrors the delay shown in Fig. 6. When the number of flows is small,
as soon as the delay grows over the target, the flows react and the
queue size is kept well below its target. However, as the number of
flows grows, we can appreciate that the consumers manage to keep the
average delay controlled around the AQM activation value.

5.2. Cascade topology

In our second experiment we wanted to test our proposal in a more
challenging environment with changing bottleneck links. For this, we
have employed the network topology depicted in Fig. 8. As before,
there are four consumers with the same round-trip delays (so that
their expected rates stay identical), but now there are three different
downstream bottlenecks: one located in the output queue of 𝑅2 to 𝑅1,
the second one from 𝑅3 to 𝑅2 and, finally, one on the outgoing producer
interface. In this experiment, 𝐶1 is active during the whole simulation,
𝐶2 from 50 s to 300 s, 𝐶3 from 100 s to 250 s and 𝐶4 from 150 s to 200 s.
In this way, the bottleneck moves between 𝑅1, 𝑅2 and 𝑅3 throughout
the experiment. Also notice that the expected individual rates when
there are two or more competing communications are always 50Mb∕s.
We have also employed this topology to compare the performance
of our approach to that of the canonical CoDel implementation in a
TCP/IP network. For this, we have established four TCP connections
that always have data ready to be sent from node 𝑃 to each of the client
nodes. The actual TCP version used was NewReno as implemented in
ns−3.

Fig. 9 shows the transmission rate obtained by each consumer as
well as the total one, represented again by a black line. The total rate
almost coincides, as expected, with the capacity of the bottleneck and,
as in the previous experiment, it can be easily appreciated that each
consumer approximately gets the same share of the bottleneck capacity.

For comparison, the results obtained by the TCP version are plotted
in Fig. 10. Clearly, the obtained results are analogous to those of our
implementation, except for the fact that in the NDN case the reaction to
congestion takes just half an RTT, as it is the consumers that manage the
transmission rate. This is more noticeable in the first (and last) 50 s of
the simulation, where the amplitude (frequency) of the rate variations
is smaller (higher) in Fig. 9 than in Fig. 10.

4 A 100Mb∕s transmission during 5ms accounts for 58.3 packets,
onsidering 1024 bytes of payload per packet, plus 48 bytes of headers.



Journal of Network and Computer Applications 221 (2024) 103772M. Rodríguez-Pérez et al.

T
o
q
m
m
d

Fig. 6. Instantaneous delay for each consumer under the dumb-bell topology. The wider colored lines represent short-term averaged values.
Fig. 7. Bottleneck queue size for the dumb-bell topology. The wider colored line is the short-term averaged queue size.
c
l
Fig. 8. Network topology for the cascade network. There is one producer (𝑃 ), four

clients (𝐶1 to 𝐶4) and three intermediate routers (𝑅1 to 𝑅3).

The sizes of the queues during the simulation are depicted in Fig. 11.
he figure includes, for each bottleneck queue, its short term average
verlaid using a bolder line. The black line represents the expected
ueue length at every given interval. Notice that, as the bottleneck
oves during the simulation, the expected bottleneck length, when
easured in data packets (or bytes), should vary to account for the
ifferent link capacities but, in any case, it corresponds with 5ms of

queued traffic. We omit, for the sake of brevity, the results from the
TCP scenario, since they are quite similar to those obtained in the NDN
8

case.
Recall that, from 0 s to 100 s and from 250 s to 350 s, only consumers
behind 𝑅1 are active and, therefore, only a queue builds up on the link
from 𝑅2 to 𝑅1. However, for 100 s to 150 s and for 200 s to 250 s, the
150Mb∕s capacity of link 𝑅3 to 𝑅2 is utilized and so the bottleneck
queue forms on that link. In the figure we can see how the bold red
line diminishes, albeit it does not completely disappear, while the blue
line oscillates around its target. Finally, from 150 s to 200 s, all the
onsumers are active and the bottleneck queue forms on the outgoing
ink from 𝑃 to 𝑅3. Consequently, the two other queues diminish, while

the new one oscillates around its target.
We also take a look at the information gathered by the consumers

themselves about the queuing status. We will use consumer 𝐶1 for
this, as it is active during the whole experiment, but the results should
extrapolate to the other consumers. As stated in Section 4, consumers
need to obtain information about the throughput and the queuing
delay of the bottleneck link if they are going to implement CoDel
by themselves. As the routers themselves ignore where the bottleneck
resides, the consumers get information from all the routers along the
path. Fig. 12 shows the information received by consumer 𝐶1 about the
throughput at the routers. From 0 s to 100 s and from 250 s to 350 s all
routers send approximately 100Mb∕s worth of data. Again, the result is

quite noisy, but the short term average stays relatively constant. In the



Journal of Network and Computer Applications 221 (2024) 103772

9

M. Rodríguez-Pérez et al.

Fig. 9. Instantaneous throughput obtained by each NDN consumer and its sum under the cascade topology.

Fig. 10. Instantaneous throughput obtained by each TCP flow and its sum under the cascade topology (in-network CoDel scenario).

Fig. 11. Bottleneck queue size for the cascade topology. The wider colored lines represent short-term averaged values.



Journal of Network and Computer Applications 221 (2024) 103772M. Rodríguez-Pérez et al.
Fig. 12. Throughput on each queue as known to the consumer 𝐶1. The wider colored lines represent short-term averaged values.
Fig. 13. Queuing delay on each queue as known to the consumer 𝐶1. The wider colored lines represent short-term averaged values.
intervals from 100 s to 150 s and from 200 s to 250 s we can distinguish
the different throughput of link 𝑅2 to 𝑅1 and those of 𝑃 to 𝑅3 and 𝑅3
to 𝑅2, as they no longer overlap. Finally, between 150 s and 200 s each
bottleneck is observing a different throughput and thus the figure shows
the three different rates. As expected, consumer 𝐶1 is able to obtain the
right information about each bottleneck rate for the whole duration of
the experiment.

Finally, Fig. 13 shows the information gathered by consumer 𝐶1
about the queuing delay at each router. It clearly mirrors Fig. 11, albeit
in this case the information is directly provided in time units.

5.3. Multiple bottlenecks topology

Our final set of experiments involves testing the proposal in a
parking-lot network topology that exhibits multiple simultaneous bot-
tlenecks. The actual topology is represented in Fig. 14. There are three
simultaneous transmissions from 𝑃1, 𝑃2 and 𝑃3 to 𝐶1, 𝐶2 and 𝐶3,
respectively, that have to go through the whole network. At the same
time, transmissions from 𝑃𝑖 to 𝐶𝑖, 𝑖 ∈ [4, 16], ensure that the outgoing
link from each router 𝑅𝑗+1 to 𝑅𝑗 stays congested.

Table 3 summarizes the achieved rates from both groups of clients.
It is easy to see that clients 𝐶 to 𝐶 should get the same rate, and,
10

1 3
in fact, their fairness level, as measured with Jain’s index (Jain et al.,
1984), is almost 1. The same happens with clients 𝐶4 to 𝐶16. They all
get the same RTT and compete against the first three clients. Again,
both the small standard deviation and the fairness index very close to
1 confirm it. There is, however, a very big difference between the rates
obtained by both sets of clients that is caused by two simultaneous ef-
fects. On the one hand, the first three clients experience a much higher
propagation delay, and hence, even bigger RTTs when accounting for
the queues. Secondly, as almost all links are congested, the expected
loss rate—in our case, the rate of congestion notification by the AQM
mechanism—has to be different. If 𝑝1 is the loss probability on a single
queue, then the loss probability for the first three clients grows to
𝑝13 = 1− (1− 𝑝1)13.5 In our experiments, we have measured that clients
𝐶4 to 𝐶16 experience an RTT around 17ms. Then, according to Mathis’s
formula (Mathis et al., 1997),

𝑝1 =
( 1.22 ⋅𝑀𝑆𝑆
𝑅𝑇𝑇 ⋅ 𝑟𝑎𝑡𝑒

)2
=
(

1.22 ⋅ (8 ⋅ 1024) bits
17ms ⋅ 0.8225Mb∕s

)2
≈ 47.72 × 10−6, (6)

5 Note that, according to the aggregate rate obtained by clients 𝐶1 to 𝐶3,
there should be no queue on any output of 𝑅 .
1



Journal of Network and Computer Applications 221 (2024) 103772M. Rodríguez-Pérez et al.

t
t
s
T

q
t
g
m
s
o
q
t
s

Fig. 14. Network topology for the multi-bottleneck network. There are sixteen pairs of producers and consumers (consumer 𝐶𝑖 requests data from producer 𝑃𝑖). Nodes 𝑅1 to 𝑅14
are intermediate NDN nodes.
Fig. 15. Bottleneck queue size for the multi-bottleneck topology on the 𝑅10 → 𝑅9 link. The wider colored line represents short-term averaged values.
6

i
i
S
m
o
s
s
m
m
b
t
w
i

i
o
d
i
l
s

Table 3
Average client rate, standard deviation and fairness
index for the two different sets of clients in the
multi-bottleneck scenario.

Clients 𝐶1–𝐶3 𝐶4–𝐶15

Av. rate 5.23Mb∕s 85.1Mb∕s
Rate std. dev. 0.823Mb∕s 0.497Mb∕s
Fairness 0.983 76 0.999 97

where 𝑀𝑆𝑆 is the maximum segment size. So, 𝑝13 ≈ 620.2 × 10−6 and
he three first clients should achieve a rate about 4.180Mb∕s when we
ake into account their measured RTT of 96ms and 1024 bytes packet
izes. This rate value is, clearly, in the same range as that shown in
able 3.

Fig. 15 shows the instantaneous behavior of one representative
ueue, in particular, that of link between 𝑅10 and 𝑅9. We can see
hat the AQM mechanism is able to react when the queue occupation
rows larger than our 5ms target delay. As there is just one flow using
ost of the bandwidth, it behaves similarly to that of the dumb-bell

cenario with just one client (see the first 20 s of Fig. 7), with an average
ccupation between 20 and 30 packets. Table 4 shows the average
ueue sizes and standard deviation for the rest of the queues—recall
hat no queue forms in any outgoing link of 𝑅1. As expected, all queues
11

how very similar results. a
. Discussion

Shifting queue management operations to the network terminals,
n line with the end-to-end philosophy that was the basis of the orig-
nal Internet architecture, has both advantages and disadvantages.
uch a mechanism opens up new avenues for experimentation, as
odifications and tuning would not depend on network operators

r equipment manufacturers. However, widespread adoption requires
tandardization and coordination among the network users. Such large-
cale deployment is only in the hands of organizations controlling the
ajor operating systems. We have shown that it is possible to entirely
imic the behavior of a modern AQM algorithm at the end hosts. We

elieve that it is an alternative worth exploring, even if it is restricted
o new network architectures, relatively isolated networks, or even for
hen Internet providers are hesitant to set up proper AQM mechanisms

n their networks.
We have shown that it is possible to obtain and transmit the needed

nformation to the hosts in an efficient and scalable manner. In fact, in
ur particular scenario in an NDN network, the proposed modifications
o not need any change in the current packet format. The added state
n the routers—just their average rate and queue occupancy—scales
inearly with the number of interfaces. Consumers, in contrast, have to
tore information about every router in their paths, but that is a modest

mount of memory for current network devices.



Journal of Network and Computer Applications 221 (2024) 103772M. Rodríguez-Pérez et al.

a
c
b

7

g
t
w
w
a
t
l
s
t
p

m
c
s
q
s

t
n
t
t
f
t

C

o

Table 4
Average queue size and standard deviation on each router (in packets) for the multi-bottleneck scenario.
𝑅1 is omitted as no queue is formed in its outgoing interfaces.

𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑅7 𝑅8 𝑅9 𝑅10 𝑅11 𝑅12 𝑅13 𝑅14

Av. 29.5 28.4 29.6 28.2 27.9 27.7 29.3 29.1 28.9 29.4 29.9 29.8 29.4
Dev. 21.3 21.5 22.3 21.4 21.6 21.8 21.6 21.5 21.4 23.3 21.7 25.5 25.5
This information makes it possible to implement advanced AQM
lgorithms while still providing the congestion control capabilities
ommon to end hosts in the current Internet. This opens the door to
oth experimentation and rapid deployment of new AQM schemes.

. Conclusions

In this paper we have tested the feasibility of performing joint con-
estion control and active queue management in an end-to-end way. To
his end, we have implemented these capabilities as a NDN application
ith minimal changes to the NDN router implementation. In particular,
e have leveraged the existing 64-bit congestion information field
vailable in the link layer of the NDN architecture to transmit real-
ime and accurate information about both the queuing delay and the
ink throughput from the routers to the end hosts in an efficient and
calable manner. Moreover, all routers inside a given path are able to
ransmit this information to the downstream consumers with the same
robability and with no need for explicit coordination.

We have also demonstrated how this information can be used to
imic a modern AQM algorithm (CoDel) and perform TCP-compatible

ongestion control simultaneously at the receivers. We have proved via
imulation that our CoDel implementation is able to control the average
ueue sizes in all the bottlenecks and that each consumer obtains a fair
hare of the network capacity.

We plan to expand this initial proof-of-concept work to explore
he convergence of this idea with the multipath capabilities of NDN
etworks, and, in particular, with the possibility to identify subpaths
hanks to the congestion information obtained from the different bot-
lenecks. This should help with multipath transmissions, as it would
acilitate the estimation of the RTT for each subpath separately. Addi-
ionally, we also plan to test our proposal in a multicast setup.

RediT authorship contribution statement

Miguel Rodríguez-Pérez: Conceptualization, Software, Writing –
riginal draft, Funding acquisition. Sergio Herrería-Alonso: Valida-

tion, Supervision, Funding acquisition, Writing – review & editing. J.
Carlos López-Ardao: Writing – review & editing. Raúl F. Rodríguez-
Rubio: Writing – original draft, Investigation.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Miguel Rodríguez Pérez on behalf of all the authors.

Data availability

Data will be made available on request.

Acknowledgments

This work has received financial support from grant PID2020-
113240RB-I00, financed by MCIN/ AEI/10.13039/501100011033, and
by the Xunta de Galicia (Centro singular de investigación de Galicia
accreditation 2019–2022) and the European Union (European Re-
gional Development Fund—ERDF). Funding for open access charge:
12

Universidade de Vigo/CRUE-CISUG.
References

Anon, 2020. [ndnSIM]: NS-3 based NDN simulator. https://github.com/named-data-
ndnSIM/ndnSIM.

Anon, 2022. Named data networking forwarding daemon. https://github.com/named-
data/NFD.

Cao, Y., Xu, M., Fu, X., 2012. Delay-based congestion control for multipath TCP. In:
2012 20th IEEE International Conference on Network Protocols (ICNP). (ISSN:
1092-1648) pp. 1–10. http://dx.doi.org/10.1109/ICNP.2012.6459978.

Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V., 2016. BBR:
Congestion-based congestion control: Measuring bottleneck bandwidth and round-
trip propagation time. Queue 14 (5), 20–53. http://dx.doi.org/10.1145/3012426.
3022184.

Carofiglio, G., Gallo, M., Muscariello, L., Papali, M., 2013. Multipath congestion control
in content-centric networks. In: 2013 IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS). pp. 363–368. http://dx.doi.org/10.1109/
INFCOMW.2013.6970718.

Hashemi, S.N.S., Bohlooli, A., 2021. 3CP: Coordinated congestion control protocol for
named-data networking. IEEE Trans. Netw. Serv. Manag. 18 (3), 3918–3932. http:
//dx.doi.org/10.1109/TNSM.2021.3086437, conference Name: IEEE Transactions
on Network and Service Management.

Hu, Y., Serban, C., Wang, L., Afanasyev, A., Zhang, L., 2021. BBR-inspired conges-
tion control for data fetching over NDN. In: MILCOM 2021-2021 IEEE Military
Communications Conference (MILCOM). (ISSN: 2155-7586) pp. 426–431. http:
//dx.doi.org/10.1109/MILCOM52596.2021.9652898.

Jain, R.K., Chiu, D.-M.W., Hawe, W.R., 1984. A quantitative measure of fairness and
discrimination for resource allocation in shared computer system. Tech. Rep. DEC-
TR-01, Digital Equipment Corportation, https://www1.cse.wustl.edu/jain/papers/
ftp/fairness.pdf.

Junxiao, S., Afanasyev, A., Pesavento, D., Newberry, D., Schneider, K., Liang, T.,
[NDNLPv2] — NFD. https://redmine.named-data.net/projects/nfd/wiki/NDNLPv2.

Kutscher, D., Ohlman, B., Oran, D., 2012. Information-Centric Networking Research
Group. Internet Research Task Force, https://irtf.org/icnrg.

Li, Z., Shen, X., Xun, H., Miao, Y., Zhang, W., Luo, P., Liu, K., 2023. CoopCon: Cooper-
ative hybrid congestion control scheme for named data networking. IEEE Trans.
Netw. Serv. Manag. http://dx.doi.org/10.1109/TNSM.2023.3262198, Conference
Name: IEEE Transactions on Network and Service Management.

Mahdian, M., Arianfar, S., Gibson, J., Oran, D., 2016. MIRCC: Multipath-aware
ICN rate-based congestion control. In: Proceedings of the 3rd ACM Conference
on Information-Centric Networking, ACM-ICN ’16. Association for Computing
Machinery, New York, NY, USA, pp. 1–10. http://dx.doi.org/10.1145/2984356.
2984365.

Mathis, M., Semke, J., Mahdavi, J., Ott, T., 1997. The macroscopic behavior of the
TCP congestion avoidance algorithm. ACM SIGCOMM Comput. Commun. Rev. 27
(3), 67–82. http://dx.doi.org/10.1145/263932.264023.

Nichols, K., Jacobson, V., 2012. Controlling queue delay. Commun. ACM 55 (7), 42–50.
http://dx.doi.org/10.1145/2209249.2209264.

Nichols, K., Jacobson, V., McGregor, A., Iyengar, J., 2018. Controlled delay active queue
management. RFC 8289, http://dx.doi.org/10.17487/RFC8289.

Nikmard, B., Movahhedinia, N., Khayyambashi, M.R., 2022. Congestion avoidance by
dynamically cache placement method in named data networking. J. Supercomput.
78 (4), 5779–5805. http://dx.doi.org/10.1007/s11227-021-04080-0.

Qin, J., Xing, Y., Wei, W., Xue, K., 2020. Edge computing aided congestion control
using neuro-dynamic programming in NDN. In: GLOBECOM 2020-2020 IEEE Global
Communications Conference. (ISSN: 2576-6813) pp. 1–6. http://dx.doi.org/10.
1109/GLOBECOM42002.2020.9322365.

Qu, D., Wu, J., Zhang, J., Gao, C., Shen, H., Li, K., 2023. Efficient congestion
control scheme based on caching strategy in NDN. J. Netw. Comput. Appl. 216,
http://dx.doi.org/10.1016/j.jnca.2023.103651.

Rodríguez Pérez, M., 2023. Simulation scenarios for a joint AQM and congestion control
algorithm. https://github.com/ICARUS-ICN/jaqmcc.

Rozhnova, N., Fdida, S., 2012. An effective hop-by-hop Interest shaping mechanism
for CCN communications. In: 2012 Proceedings IEEE INFOCOM Workshops. pp.
322–327. http://dx.doi.org/10.1109/INFCOMW.2012.6193514.

Schneider, K., Yi, C., Zhang, B., Zhang, L., 2016. A practical congestion control
scheme for named data networking. In: Proceedings of the 3rd ACM Conference
on Information-Centric Networking, ACM-ICN ’16. Association for Computing
Machinery, pp. 21–30. http://dx.doi.org/10.1145/2984356.2984369.

Song, S., Zhang, L., 2022. Effective NDN congestion control based on queue size
feedback. In: Proceedings of the 9th ACM Conference on Information-Centric
Networking. ACM, Osaka Japan, pp. 11–21. http://dx.doi.org/10.1145/3517212.
3558088.

https://github.com/named-data-ndnSIM/ndnSIM
https://github.com/named-data-ndnSIM/ndnSIM
https://github.com/named-data-ndnSIM/ndnSIM
https://github.com/named-data/NFD
https://github.com/named-data/NFD
https://github.com/named-data/NFD
http://dx.doi.org/10.1109/ICNP.2012.6459978
http://dx.doi.org/10.1145/3012426.3022184
http://dx.doi.org/10.1145/3012426.3022184
http://dx.doi.org/10.1145/3012426.3022184
http://dx.doi.org/10.1109/INFCOMW.2013.6970718
http://dx.doi.org/10.1109/INFCOMW.2013.6970718
http://dx.doi.org/10.1109/INFCOMW.2013.6970718
http://dx.doi.org/10.1109/TNSM.2021.3086437
http://dx.doi.org/10.1109/TNSM.2021.3086437
http://dx.doi.org/10.1109/TNSM.2021.3086437
http://dx.doi.org/10.1109/MILCOM52596.2021.9652898
http://dx.doi.org/10.1109/MILCOM52596.2021.9652898
http://dx.doi.org/10.1109/MILCOM52596.2021.9652898
https://www1.cse.wustl.edu/jain/papers/ftp/fairness.pdf
https://www1.cse.wustl.edu/jain/papers/ftp/fairness.pdf
https://www1.cse.wustl.edu/jain/papers/ftp/fairness.pdf
https://redmine.named-data.net/projects/nfd/wiki/NDNLPv2
https://irtf.org/icnrg
http://dx.doi.org/10.1109/TNSM.2023.3262198
http://dx.doi.org/10.1145/2984356.2984365
http://dx.doi.org/10.1145/2984356.2984365
http://dx.doi.org/10.1145/2984356.2984365
http://dx.doi.org/10.1145/263932.264023
http://dx.doi.org/10.1145/2209249.2209264
http://dx.doi.org/10.17487/RFC8289
http://dx.doi.org/10.1007/s11227-021-04080-0
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322365
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322365
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322365
http://dx.doi.org/10.1016/j.jnca.2023.103651
https://github.com/ICARUS-ICN/jaqmcc
http://dx.doi.org/10.1109/INFCOMW.2012.6193514
http://dx.doi.org/10.1145/2984356.2984369
http://dx.doi.org/10.1145/3517212.3558088
http://dx.doi.org/10.1145/3517212.3558088
http://dx.doi.org/10.1145/3517212.3558088


Journal of Network and Computer Applications 221 (2024) 103772M. Rodríguez-Pérez et al.
Thibaud, A., Fasson, J., Arnal, F., Sallantin, R., Dubois, E., Chaput, E., 2020. Coopera-
tive congestion control in NDN. In: ICC 2020-2020 IEEE International Conference
on Communications (ICC). pp. 1–6. http://dx.doi.org/10.1109/ICC40277.2020.
9149034.

Trossen, D., Reed, M.J., Riihijärvi, J., Georgiades, M., Fotiou, N., Xylomenos, G., 2015.
IP over ICN — The better IP? In: 2015 European Conference on Networks and
Communications (EuCNC). pp. 413–417. http://dx.doi.org/10.1109/EuCNC.2015.
7194109.

Wang, M., Yue, M., Wu, Z., 2018. WinCM: A window based congestion con-
trol mechanism for NDN. In: 2018 1st IEEE International Conference on Hot
Information-Centric Networking (HotICN). pp. 80–86. http://dx.doi.org/10.1109/
HOTICN.2018.8606039.

Wu, F., Yang, W., Sun, M., Ren, J., Lyu, F., 2021. Multi-path selection and congestion
control for NDN: An online learning approach. IEEE Trans. Netw. Serv. Manag. 18
(2), 1977–1989. http://dx.doi.org/10.1109/TNSM.2020.3044037.

Yang, J., Chen, Y., Xue, K., Han, J., Li, J., Wei, D.S.L., Sun, Q., Lu, J., 2022. IEACC: An
intelligent edge-aided congestion control scheme for named data networking with
deep reinforcement learning. IEEE Trans. Netw. Serv. Manag. 19 (4), 4932–4947.
http://dx.doi.org/10.1109/TNSM.2022.3196344.

Ye, Y., Lee, B., Flynn, R., Murray, N., Fang, G., Cao, J., Qiao, Y., 2018. PTP: Path-
specified transport protocol for concurrent multipath transmission in named data
networks. Comput. Netw. 144, 280–296. http://dx.doi.org/10.1016/j.comnet.2018.
08.002.

Ye, Y., Lee, B., Flynn, R., Xu, J., Fang, G., Qiao, Y., 2021a. Delay-based network
utility maximization modelling for congestion control in named data networking.
IEEE/ACM Trans. Netw. 29 (5), 2184–2197. http://dx.doi.org/10.1109/TNET.2021.
3090174.

Ye, Y., Lee, B., Qiao, Y., 2020. Hop-by-hop congestion measurement and practical
active queue management in NDN. In: GLOBECOM 2020-2020 IEEE Global Com-
munications Conference. (ISSN: 2576-6813) pp. 1–6. http://dx.doi.org/10.1109/
GLOBECOM42002.2020.9322585.

Ye, J., Leung, K.-C., Low, S.H., 2021b. Combating bufferbloat in multi-bottleneck
networks: Theory and algorithms. IEEE/ACM Trans. Netw. 29 (4), 1477–1493.
http://dx.doi.org/10.1109/TNET.2021.3066505.

Zafar, H., Abbas, Z.H., Abbas, G., Muhammad, F., Tufail, M., Kim, S., 2020. An
effective fairness scheme for named data networking. Electronics 9 (5), 749.
http://dx.doi.org/10.3390/electronics9050749.

Zeng, L., Ni, H., Han, R., 2021. The yellow active queue management algorithm in
ICN routers based on the monitoring of bandwidth competition. Electronics 10 (7),
806. http://dx.doi.org/10.3390/electronics10070806.

Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., Claffy, K., Crowley, P., Papadopou-
los, C., Wang, L., Zhang, B., 2014. Named data networking. Comput. Commun.
Rev. 44 (3), 66–73. http://dx.doi.org/10.1145/2656877.2656887.
13
Miguel Rodríguez-Pérez received the M.Sc. and Ph.D. degrees in telecommunication
engineering from the University of Vigo, Spain, in 2001 and 2006, respectively. He
is currently an Associate Professor with the Department of Telematics Engineering,
University of Vigo, where he is also an Affiliated Member of the co-located Networking
Laboratory. He has published a book and coauthored over 45 conference and journal
papers. His research interests include congestion control and traffic engineering, with
a strong focus on energy efficiency.

Dr. Sergio Herrería Alonso received the M.Sc. and Ph.D. degrees in telecommunication
engineering from the University of Vigo, Spain, in 2001 and 2006, respectively. He
is currently an Associate Professor with the Department of Telematics Engineering,
University of Vigo, where he is also an affiliated member of the colocated Networking
Laboratory. His research interests include quality of service in the Internet, the
performance analysis of computer networks and energy-efficient networking. He has
authored over 30 papers in peer-reviewed international conferences and journals, most
of them with a high impact factor (Q1 and Q2 quartiles) in the ‘‘WOS-Journal Citation
Report’’. He has an h-index value of 11 (Scopus).

J. Carlos López Ardao has been a professor at the School of Telecommunications
Engineering of the University of Vigo since 1990 (University Holder since 2000). His
field of research has always been related to the modeling and performance analysis
of communications networks and traffic engineering, although in recent years he has
also begun to work in the field of subjective quality in video transmission applications
and in the application of technology towards educational innovation (Social Learning,
Learning Analytics, Gamification, Flipped Learning, etc.). From 1993 to date he has
been a collaborating researcher in 8 consecutive projects of the National R & D Plan,
two of them coordinated. He is coauthor of 22 scientific articles published in journals
indexed in the Journal Citation Report (of Q1 and Q2 ranges, the majority) and of
more than 50 communications to congresses. Currently, he is a member of the doctoral
program in information and communication technologies at the University of Vigo, and
he has directed or co-directed 3 doctoral theses. He is a co-founder of the technological
spin-off of the University of Vigo, SocialWire Labs S.L., dedicated to the development
of educational innovation technologies on social networking environments.

Raúl Rodríguez Rubio received the M.Sc. and Ph.D. degrees in telecommunication
engineering from the University of Vigo, Spain, in 1991 and 2000, respectively. He
is currently an Associate Professor within the Department of Telematics Engineering,
University of Vigo, where he is also an affiliated member of the co-located Networking
Laboratory. His research interests include quality of service in Internet, performance
analysis of computer networks, and Cybersecurity. He has authored [over 20 papers
in peer-reviewed international conferences and journals], some of them with a high
impact factor (Q1 and Q2 quartiles) in the ‘‘WOS-Journal Citation Report’’.

http://dx.doi.org/10.1109/ICC40277.2020.9149034
http://dx.doi.org/10.1109/ICC40277.2020.9149034
http://dx.doi.org/10.1109/ICC40277.2020.9149034
http://dx.doi.org/10.1109/EuCNC.2015.7194109
http://dx.doi.org/10.1109/EuCNC.2015.7194109
http://dx.doi.org/10.1109/EuCNC.2015.7194109
http://dx.doi.org/10.1109/HOTICN.2018.8606039
http://dx.doi.org/10.1109/HOTICN.2018.8606039
http://dx.doi.org/10.1109/HOTICN.2018.8606039
http://dx.doi.org/10.1109/TNSM.2020.3044037
http://dx.doi.org/10.1109/TNSM.2022.3196344
http://dx.doi.org/10.1016/j.comnet.2018.08.002
http://dx.doi.org/10.1016/j.comnet.2018.08.002
http://dx.doi.org/10.1016/j.comnet.2018.08.002
http://dx.doi.org/10.1109/TNET.2021.3090174
http://dx.doi.org/10.1109/TNET.2021.3090174
http://dx.doi.org/10.1109/TNET.2021.3090174
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322585
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322585
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322585
http://dx.doi.org/10.1109/TNET.2021.3066505
http://dx.doi.org/10.3390/electronics9050749
http://dx.doi.org/10.3390/electronics10070806
http://dx.doi.org/10.1145/2656877.2656887

	End-to-end active queue management with Named-Data Networking
	Introduction
	Contributions

	Related Work
	End to End Approaches
	In-Network Congestion Control
	Hybrid Alternatives

	Delivering Queue State to the Edges
	Router Coordination
	Encoding Congestion Information

	A Client-Located CoDel Implementation
	Results
	Simple Topology
	Cascade Topology
	Multiple Bottlenecks Topology

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


